Pleiotropic effects of intron removal on base modification pattern of yeast tRNAPhe: an in vitro study.
نویسندگان
چکیده
Cell-free yeast extract has been successfully used to catalyze the enzymatic formation of 11 out of the 14 naturally occurring modified nucleotides in yeast tRNAPhe(anticodon GAA). They are m2G10, D17, m22G26, Cm32, Gm34,psi39, m5C40, m7G46, m5C49, T54 andpsi55. Only D16, Y37 and m1A58 were not formed under in vitro conditions. However, m1G37was quantitatively produced instead of Y37. The naturally occurring intron was absolutely required for m5C40formation while it hindered completely the enzymatic formation of Cm32, Gm34and m1G37. Enzymatic formation of m22G26,psi39, m7G46, m5C49, T54 andpsi55were not or only slightly affected by the presence of the intron. These results allow us to classify the different tRNA modification enzymes into three groups: intron insensitive, intron dependent, and those requiring the absence of the intron. The fact that truncated tRNAPheconsisting of the anticodon stem and loop prolonged with the 19 nucleotide long intron is a substrate for tRNA: cytosine-40 methylase demonstrates that the enzyme is not only strictly intron dependent, but also does not require fully structured tRNA.
منابع مشابه
Chemical modification as a probe of conformational changes in transfer ribonucleic acid on aminoacylation.
Treatment of Escherichia coli CA265 phenylalanyl-tRNA with 3M-NaHSO3, pH6.0, at 25 degrees C resulted in modification of four bases and in the deacylation of the charged tRNAphe. The similarity of the rates of base modification and of the deacylation of the phenylalanyl-tRNA permitted the isolation of partially modified phenylalanyl-tRNAphe and partially modified deacylated tRNAphe. The sites a...
متن کاملIn Vitro Binding Potentials of Bentonite, Yeast Cell Wall and Lactic Acid Bacteria for Aflatoxin B1 and Ochratoxin A
Background: This study intended to assess individual and combined adsorption potentials of three adsorbents (processed bentonite as an inorganic adsorbent, and cell walls of Saccharomyces cerevisiae and of the GG strain of Lactobacillus rhamnosus as organic adsorbents) for aflatoxin B1 and ochratoxin A under in vitro conditions. Methods: This study was conducted in Ferdowsi University of Mashh...
متن کاملHydrogen-bonded protons in the tertiary structure of yeast tRNAPhe in solution.
Temperature-dependent lowfield proton magnetic resonance spectra of yeast tRNAPhe were recorded between 10 and 15 parts per million. Seven resonances of hydrogen-bonded protons disappeared reversibly under two sets of conditions where the selective broadening of tertiary structure resonances were predicted by temperature jump experiments. The seven resonances were assigned to the seven tertiary...
متن کاملRole of modified nucleosides in transfer ribonucleic acid. Effect of removal of the modified base adjacent to 3' end of the anticodon in codon-anticodon interaction.
Removal of base Y adjacent to the anticodon of yeast phenylalanine tRNA changes the coding properties of tRNAPhe. Phenylalanine tRNA from which base Y has been removed (tRNA:b,“) recognizes UUC better than WU. Codon UUU is read efficiently at higher Mg++ concentration or in the presence of streptomycin. A dipeptide cannot be synthesized with N-acetyl-Phe-tRNAPh” and Phe-tRNA% unless the base Y ...
متن کاملA phenylalanine tRNA gene from Neurospora crassa: conservation of secondary structure involving an intervening sequence.
We have isolated and sequenced a tRNAPhe gene from Neurospora crassa. Hybridization analyses suggest that trnaPhe is the only tRNA encoded on the cloned 5 kb DNA fragment. The tRNAPhe gene contains an intervening sequence 16 nucleotides in length located one nucleotide 3' to the anticodon position. The tRNAPhe coding region of Neurospora and yeast are 91% conserved, whereas their intervening se...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nucleic acids research
دوره 25 14 شماره
صفحات -
تاریخ انتشار 1997